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Abstract — Finding the convex hull of a point set has applications in research fields as well as industrial tools. This paper 
presents a pre-processing algorithm for computing convex hull vertices in a 2D spatial point set. Based on the position of 
extreme points we divide the exterior points into four groups bounded by rectangles (p-Rect). Then inside each p-Rect we 
recursively find and check the extreme points to verify if they are eligible to be convex hull points or not. The process 
gives a small set of candidate points for convex hull computation. Efficiency of the algorithm is evaluated with respect to 
time and space. Performance comparison with other classical algorithms shows that implementation of this pre-
processing algorithm significantly improves their performance by reducing computational overhead and time. 
 

Index Terms — Quick Convex Hull, Recursion, p-Rect, Point rotation, Preprocessing Algorithm. 
 

 
  ——————————  —————————— 

 

1  INTODUCTION 

The convex hull (CH) of a set Q of points is the smallest 
convex polygon P for which each point in Q is either on the 
boundary of P or in its interior [1]. Its application area 
includes computer visualization, ray tracing, path finding, 
visual pattern matching, verification methods and geometry. 
It is also used as a tool to construct geometric shapes, the GIS 
applications such as area cut, subdivision of Triangulated 
Irregular Network (TIN) and DTM generation and area 
dynamic calculation [2]. 

Convex hull algorithms are broadly divided into two 
categories: 1) graph traversal and 2) incremental [3]. The 
graph traversal algorithms construct CHs by identifying some 
initial vertices of CH and later finding the remaining points 
and edges by traversing it in some order. The Graham scan 
[4], Jarvis march [5] and Monotone chain [6] are such 
algorithms. Incremental algorithms first find an initial CH 
and then insert or merge the remaining points, edges or even 
sub CHs as they are discovered, into current CH sequentially 
or recursively to obtain the final CH. Quickhull [7] and 
Divide-and-Conquer [8] belong to this class. 

Most of these algorithms scan and process all the points 
one by one resulting in much computational overhead. 

Normally, the final convex hull contains only a few points, 
and most of the points are in the interior of convex hull. Based 
on this concept we devised a fast preprocessing algorithm 
which filters out most of the non-convex hull points. The final 
CH points can be easily found out of the candidate points 
discovered after the pre-processing, using any classical 
algorithm with minimal overhead. 
 

1.1  RELATED WORKS 

   Recently, several novel algorithms are developed to 
obtain CH for a point set. Fu and Lu in [2] propose an 
improved algorithm which finds convex hull boundary by 
recursively dividing the set of points into sub regions and 
updating them after each recursive division. A polynomial-
time algorithm for the D-convex hull of a finite point set in the 
Plane is discussed in [10]. Some algorithms enhance 
performance though excluding non-convex hull vertexes to 
reduce the analysis of the minimum convex hull, such as 
grouping the set of points [9, 11], establishing the auxiliary 
grid field [12] and obtaining the extreme points as in the 
quick convex hull [7, 13, 14, 15]. The Floyd quadrilateral 
method and octagonal methods are some of the quick convex 
hull algorithms. Huang and Liu [16] present an algorithm 
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based on binary tree that builds convex hull with scattered 
point based on the concept of quick convex hull. 

  Clarkson, Mulzer and Seshadhri developed a self-
improving algorithm to compute planar convex hull points 
[17]. Liu and Wang [18] propose a reliable and effective CH 
algorithm based on a technique named Principle Component 
Analysis for pre-processing the planar point set. A fast CH 
algorithm with maximum inscribed circle affine 
transformation is described in [19]. Some algorithms are 
designed targeted toward harnessing the power of GPUs as in 
[20]. 

 
1.2  PROPOSED ALGORITHM 
 

   Our algorithm is based on the fact that in a given set of 
randomly scattered points, over a two dimensional Euclidean 
space, only the points to the exterior of the region covered by 
the point set, participate in constructing the convex hull. Rests 
of the interior points are not of any importance. So we try to 
obtain the exterior points near the boundary and check 
whether they are proper candidates for being convex hull 
points. 

   For this purpose we divide the point set into four 
rectangular region or p-Rects (see Fig. 1). The four p-Rects are 
called Bottom-Left (BL), Bottom-Right (BR), Top-Left (TL) and 
Top-Right (TR). The points inside the p-Rects are called points 
of interest. The four p-Rects distribute the entire point set into 
5 different clusters based on location of individual points 
(location based clustering). Each of the clusters contains some 
edges of the convex hull. Each of the four p-Rects is 
constructed by two corner points which have extreme x/y 
coordinates chosen as explained next. 

 

 
Fig. 1.Four regions (p-Rect) with the points of interest constructed by 
their two corner points 

The points in Bottom-Left (BL) region are bounded by a p-
Rect whose two opposite corner points are PBL_Xmin and 
PBL_Ymin, where 

PBL_Xmin is the point with minimum x-coordinate. 

PBL_Ymin is the point with minimum y-coordinate. 
The points in Bottom-Right (BR) region are bounded by a 

p-Rect whose two opposite corner points are PBR_Xmax and 
PBR_Ymin, where 

PBR_Xmax is the point with maximum x-coordinate. 
PBR_Ymin is the point with minimum y-coordinate. 

The points in Top-Left (TL) region are bounded by a p-
Rect whose two opposite corner points are PTL_Xmin and 
PTL_Ymax, where 

PTL_Xmin is the point with minimum x-coordinate. 
PTL_Ymax is the point with maximum y-coordinate. 

The points in Top-Right (TR) region are bounded by a p-
Rect whose two opposite corner points are PTR_Xmax and 
PTR_Ymax, where 

PTR_Xmax is the point with maximum x-coordinate. 
PTR_Ymax is the point with maximum y-coordinate. 

In case of a conflict between two or more points having 
same extreme x-coordinate or y-coordinate, we resolve that 
using the following rules. 

If number of points having minimum x-coordinate is 
greater than 1 then, for Bottom-Left p-Rect we take the point 
with minimum y-coordinate and make it PBL_Xmin. While for 
Top-Left p-Rect we take the point with maximum y-
coordinate and make it PTL_Xmin. 

If more than one point has maximum x-coordinate then, 
for Bottom-Right p-Rect we take the point with minimum y-
coordinate and make it PBR_Xmax. While for Top-Right p-Rect 
the point with maximum y-coordinate is chosen as PTR_Xmax. 

If number of points having minimum y-coordinate is 
greater than 1 then, for Bottom-Left p-Rect we take the point 
with minimum x-coordinate and make it PBL_Ymin and for 
Bottom-Right p-Rect we take the point with maximum x-
coordinate and make it PBR_Ymin. 

If more than one point has maximum y-coordinate then, 
for Top-Left p-Rect we take the point with minimum x-
coordinate and make it PTL_Ymax. While for Top-Right p-Rect we 
take the point with maximum x-coordinate and make it 
PTR_Ymax. 

 
The above 8 points are directly included in the convex hull 

candidate point set. There may be less than 8 points in case 
two extreme points are coincident. For example, PBL_Xmin and 
PTL_Xmin can be the same point if there is only one point with 
minimum x-coordinate. 

 
The points which have the minimum/maximum x-

coordinates or y-coordinates but do not belong to any of the 
four p-Rects are directly included in the convex hull candidate 
point set because of the obvious fact that points with extreme 
x/y coordinate are definitely part of convex hull. These points 
are identified from the cluster which does not belong to any 
of the four p-Rects. The number of candidate points detected 
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from this cluster is proportional to the size of the cluster and 
distribution of points over the two dimensional Euclidean 
space. 

 

A.  Processing the Points of Interest 
      Points inside the p-Rects go through a recursive 

process which gradually finds out the boundary points in that 
region. But before explaining the process we present a brief 
description of a related concept, which determines the 
clockwise/anti-clockwise orientation of a point with respect to 
another point. 

 
       Let p0(x0, y0), p1(x1, y1) and p2(x2, y2) are three discrete 

points and we want to determine whether p2 is clockwise or 
anticlockwise from p1 with respect to p0. For that we calculate 
cross product between the directed segments p0p1 and p0p2 
like in (1) [1]. 

(p2 - p0) × (p1 - p0) = (x2 - x0)(y1 - y0) - (x1 - x0)(y2 - y0)    (1) 

       If the sign of this cross product is negative, then p2 is 
counter-clockwise with respect to p1. A positive cross product 
indicates a clockwise orientation (see Fig. 2). A cross product 
of 0 means that the points p0, p1, and p2 are collinear. 

 
Fig. 2. Using cross product to determine point orientation. (a) Negative 
cross product means counter clockwise rotation. (b) Positive cross 
product indicates clockwise rotation. 

1)  Bottom-Left p-Rect Operation: For this section the 
points of interest is the set of points {p1, p2, p3 ...} where each 
pi = (xi, yi) such that 

PBL_Xmin.x < xi < PBL_Ymin.x 
PBL_Ymin.y < yi < PBL_Xmin.y 

Out of this set we find out P′BL_Xmin and P′BL_Ymin the same 
way we found PBL_Xmin and PBL_Ymin for the outer Bottom-Left p-
Rect. Further processing depends upon the following 3 cases. 

Case 1: If there are no such points then we terminate 
further processing in this p-Rect. 

Case 2: If both are same point then we check whether the 
point is clockwise or anticlockwise from point PBL_Ymin with 
respect to point PBL_Xmin (see Fig. 3). If it is clockwise or 
collinear then we include it to the convex hull candidate point 
set and terminate further processing. 

Case 3: If both are different than we check whether they 
are clockwise or anticlockwise from point PBL_Ymin with respect 
to point PBL_Xmin. Again we will have 3 scenarios: 

• If none of them are clockwise from PBL_Ymin then we 
leave further processing. 

• If only any one of them is clockwise from PBL_Ymin then 
we include it to the convex hull point set and 
terminate further processing in this section. 

• If both of them are clockwise from PBL_Ymin or collinear 
then we construct a smaller p-Rect keeping P′BL_Xmin and 
P′BL_Ymin as corner points and recursively process the points 
of interest in the new Bottom-Left (BL') p-Rect using above 
steps in search of new convex hull points. 

 
 
 
 
 
 
 
 
         (a)    (b) 
     
 
 
 
 
 
 
 
          (c)                     (d) 

 

Fig. 3. Operation on the Bottom-Left p-Rect points. (a) Checking 
orientation of P′BL_Xmin and P′BL_Ymin from PBL_Ymin. (b) Creation of new 
Bottom-Left (BL′) p-Rect and processing points inside. (c) Inclusion of 
new candidate points inside inner p-Rect. (d) Inclusion of points collinear 
with PBL_Ymin. 

2) Bottom-Right p-Rect Operation: For this section the points 
of interest is the set of points {p1, p2, p3  ...} where each pi = (xi, 
yi) such that 

PBR_Ymin.x < xi < PBR_Xmax.x 
PBR_Ymin.y < yi < PBR_Xmax.y 

From this set we find out P′BR_Xmax and P′BR_Ymin the same 
way we found PBR_Xmax and PBR_Ymin for outer Bottom-Right p-
Rect. Further processing based on these two points is done 
using similar 3 cases explained in Bottom-Left p-Rect 
operation. 

Here the points are checked whether they are clockwise or 
anticlockwise from point PBR_Xmax with respect to point PBR_Ymin 
(see Fig. 4). 

 
The recursive operation continues until no new candidate 

points are found for convex hull. 
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3) Top-Right p-Rect Operation: For this section the points 
of interest is the set of points {p1, p2, p3  ...} where each pi = (xi, 
yi) such that 

PTR_Ymax.x < xi < PTR_Xmax.x 
PTR_Xmax.y < yi < PTR_Ymax.y 

 
Out of this set we find out P′TR_Xmax and P′TR_Ymax the same 

way we found PTR_Xmax and PTR_Ymax for the outer Top-Right 
section. Further processing based on these two points is done 
using 3 cases similar to the cases explained in Bottom-Left p-
Rect operation. 

 
  

 
 
 
 
 
 
 
        (a)                 (b) 
Fig. 4. Bottom-Right p-Rect operation of the points. (a) Checking 
orientation of P′BR_Xmax and P′BR_Ymin from PBR_Xmax . (b) Processing of points 
inside new Bottom-Right (BR′) section. 

 

Here the points are checked whether they are clockwise or 
anticlockwise from point PTR_Ymax with respect to point PTR_Xmax 
(see Fig. 5).  
 
 
 
 
 
 
 
 
 
Fig. 5. Top-Right p-Rect operation of the points. Here both P′TR_Xmax and 
P′TR_Ymax  are same and it is anticlockwise from PTR_Ymax. 

 

The recursive operation continues until no new points are 
found eligible for convex hull point set. 

4) Top-Left p-Rect Operation: For this section the points of 
interest is the set of points {p1, p2, p3 ...} where each pi = (xi, yi) 
such that 

PTL_Xmin.x < xi < PTL_Ymax.x 
PTL_Xmin.y < yi < PTL_Ymax.y 

From this set we find out P′TL_Xmin and P′TL_Ymax the same 
way we found PTL_Xmin and PTL_Ymax for outer Top-Left p-Rect. 
Further processing based on these two points is done using 
similar 3 cases explained in Bottom-Left section operation. 

Here the points are checked whether they are clockwise or 
anticlockwise from point PTL_Xmin with respect to point PTL_Ymax 
(see Fig. 6). 

The recursive operation continues until no new points are 
found eligible for convex hull point set. 

B.  Removing the non-convex hull points 
      After performing the four sectional operations the 

points we get are called candidate points for convex hull. We 
call them candidate points because there are some extraneous 
points which do not actually belong to the convex hull. Figure 
7(a) shows such a point PS. To remove such points we 
perform standard convex hull algorithms such as Graham's 
scan or Jarvis's March on the obtained candidate point set (see 
Figure 7(b)). 
 
 
 
 
 
 
 
 
 
         (a)                  (b) 
 

Fig. 6. Operation of the Top-Left p-Rect points. (a) Checking 
orientation of P′TL_Xmin / P′TL_Ymax from PTL_Xmin. (b) Inclusion of 
the point & termination of search in this section. 

 
 
 
 
 
 
 
 
 
        (a)                (b) 
Fig. 7. Removal of non-convex hull point. (a) PS  is a non-convex point. (b) 
PS removed after applying Graham’s scan. 

2  Algorithm Analysis 

A.  Time Efficiency Analysis 
  Our algorithm contains four recursive point region 

operation each of which finds the candidate points for convex 
hull and hence its running time can be described using a 
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recurrence equation or recurrence. Moreover these four 
operations are symmetric. So if we find the time complexity of 
any of the four operations avoiding multiplication to the 
constant factor 4, that will be time complexity of the entire 
algorithm. 

 
  It is basically a divide-and-conquer algorithm in which 

the divide operation includes searching the points of interest 
in a specific region. Combine step includes searching for 
points with minimum and/or maximum x and/or y 
coordinates, checking their rotation and keeping the distinct 
candidate points in a storage (e.g. stack) for further 
processing by standard convex hull algorithms. In conquer 
step we recursively solve a sub problem of 1/b the size of 
original input point set. The value of b can be anything 
depending upon orientation of the points, without affecting 
the final time complexity. 
For the two search operations if we apply linear search it 
requires O(n) time on n points. O(1) time is required for both 
rotation checking and storing the candidate points. So the 
entire combine step takes O(n) time as shown in (2). 

C(n) = O(n) + 2.O(1) = O(n)         (2) 

Running time for Divide step is 

D(n) = O(n)             (3) 

So the recurrence for the worst-case running time T(n) of the 
algorithm is: 

                       T(n)= �
O(1)                 if n ≤ 3
T�n

b
� + O(n)    if n > 3        (4) 

Since 

C(n) + D(n) = O(n) + O(n) = O(n)  (5) 

 

Solution to this recurrence is T(n) = O(n lg n). As we can see 
the prime factor affecting the time complexity of the 
preprocessing algorithm is the time required by the point 
searching operation. As we are applying a linear search in our 
algorithm, its time complexity is not dependent on the 
randomness and the entropy of the 2-D point set. If we apply 
a more efficient searching algorithm such as binary tree 
search running time can be reduced to O(lg n lg n). 

Let after the preprocessing step we get m candidate points, 
where m << n and n is very large. So for processing by 
standard convex hull algorithms like Graham's scan (O(n lg 
n)) and Jarvis's march (O(nh), h is the number of points in 
convex hull), the required time will be quite less, O(m lg m) 
and O(mh) respectively. 

 
Hence if T'(n) is the running time of our preprocessing 

algorithm and T(m) is the running time of any convex hull 

algorithm, then the total running time T(n) = T'(n) + T(m) will 
be less than that of the convex hull algorithm applied on non 
preprocessed point set. 

B.  Space Efficiency Analysis 
   This divide-and-conquer is not much space efficient, as 

in each recursive call we rest and store them separately for 
further processing. As a result in each recursive call a new 
memory space of size (1/b)th of the memory space of previous 
step is reserved. 

C.  Test of Numeral Value 
   We developed a simulation of our proposed algorithm 

using C programming language and tested it over several 
configurations of scattered points. We are presenting the test 
results in the following tables. The Graham's scan algorithm 
implementation uses merge sort, while Jarvis's march uses 
linear search for finding the next pivot point. 
In Tab.1. shows a particular case of processing 10,000 points 
for Bottom-Left section. As we can see after each level of 
recursion, number of points of interest reduces quickly with 
great speed of convergence. This condition also holds for 
other larger amount of point set. In fact in our simulations we 
found very few cases when the process reached 4th level of 
recursion. 
 

 
points of 
interest 

Candidate 
points 
found 

Total 
candidate 
points 

original 
data 10000 2 2 

level-1 
recursion 603 2 4 

level-2 
recursion 7 2 6 

level-3 
recursion 2 1 7 

      Tab. 1. Statistics of  Point Reduction  after  Each Level of Recursion. 

 
In Tab. 2. gives a comparative running time (in ms) 

analysis by several algorithms under our test environment. It 
is very clear that with the growing number of input points the 
efficiency of our algorithm gets better. The preprocessing 
algorithm narrows down the amount of candidate points to 
such an extent that the applied Graham's scan or Jarvis's 
march completes very quickly. 
 

Data 
amou

nt 

Jarvi
s 

marc
h 

Graha
m scan 

Proposed 
preprocessin
g + Jarvis 
march 

Proposed 
preprocessin
g + Grahams 

10000 16 83 12 34 
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30000 56 1243 15 81 

50000 94 4344 34 169 

100000 187 7323 53 410 

 
      Tab.2. Performance Comparision with other Algorithms(MS). 
 
     In Tab. 3. we present a comparative study of average 
performance gain over the classical Graham scan and Jarvis 
march algorithms by some of the recent convex hull 
algorithms presented in [16][21][22]. All these algorithms use 
almost similar principle for convex hull computation and the 
performance gain is computed based on the computation time 
required by them. The study shows that in most of the cases 
our proposed algorithm gives the highest performance gain. 
 
 
 

Algorithm Graham Scan Jarvis March 

e-Quad based 
convex Hull 
[21] 

2.36% 94.05% 

Proved Quick 
Convex Hull 
[16] 

82.73% 48.16% 

Fast Convex 
Hull [22] 

79.58%  

Our Proposed 
algorithm 95.67% 58.4% 

    Tab. 3. Comparision of  Performance Gain. 

 

3  CONCLUSION 

       In this paper we have discussed about a preprocessing 
algorithm for finding convex hull points, which is based on 
the fact that only the points existing to the boundary of a 
region covered by a randomly scattered set of points, take 
part in constituting the convex-hull. We have discussed about 
its running time complexity and also proved through real-
time simulation results that this preprocessing improves the 
overall running time of convex hull algorithms. Although the 
purpose of developing this algorithm was to find all valid 
convex hull points and use it as a standard Quick Convex 
Hull algorithm. But as we saw that the algorithm outputs 
some invalid convex hull points too and removing them was 
not possible, keeping the running time constraint into 
consideration. So, we decided to keep it as a preprocessing 
step. Our future work will be focusing on how we can remove 
this deficiency and also reduce the space complexity so that it 
can be used as a standalone convex hull algorithm. 
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